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The stress-strain state of a piecewise-homogeneous elastic plane composed of two distinct half-planes 

whose common boundary contains a denumerable set of closed cracks which become more dense 

towards infinity on one or both sides is considered. The shear stresses at the crack edges and the stress 

and rotation at infinity are specified. 

Using the Riemann boundary-value problem method for a denumerable set of contours, complex 

potentials for the problem are constructed and formulae are obtained for the stress intensity factor. The 

problem of the interaction of a closed macro-crack with an infinite row of closed micro-cracks collinear 

with it is also studied. 

SPECIAL cases of the problem under consideration have been studied previously in [l-4], 
namely, homogeneous or piecewise-homogeneous planes with finite or infinite periodic 
systems of closed cracks. In the latter case, the stress at the crack edges was, in general, non- 
periodic. 

1. STATEMENT OF THE PROBLEM 

Suppose that the elastic z= x+iy plane is bonded together from homogeneous isotropic 
upper and lower half-planes with different elastic characteristics, with a denumerable number 
of closed cracks L,, = [a,, b,], n E Z situated along the interface of the media, becoming more 
dense towards infinity and satisfying the conditions 

b,,-a,SD<m, a,+l-aa,ad>O, nEI (1.1) 

where the set of indices Z=(O, kl, . . .) or Z= (0, 1, . . .}. In the first case the cracks become 
more dense towards infinity on both sides, and in the second case, to the point +~a. Conditions 
(1.1) are satisfied, for example, by cracks situated periodically along the entire real axis or just 
a semi-axis. 

Suppose 
1. the sides Lz of the cracks are acted upon by given shear stresses r:(t) = h*(t), t EL,, 

Holder-continuous in each interval L, and decreasing as O(r-I) when t + 00, h > 1; 
2. the normal stress o, and the normal displacement 2) in the transition from one edge of the 

crack to the other change continuously, i.e. o:(t) = a;(t), u+(r) = u-(r), t E L,,; and 
3. outside the cracks along the interface of the media there is total adhesion. 
In the case under consideration, the stresses o,, o,, z,, the rotation o and the partial 
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derivatives u’, u’ with respect to x of the displacement components are expressed in terms of 
two pie~ewise-holorno~~~ functions @Jr), which have lines of discontinuity I,= ,k”,L, and 
are called complex potentials, by the formulae [S] 

)/4(b, + a,)+ ILI&&j(lCj + l)-’ W %+ ‘j@l (Z) + rj++& (a) 

where the index i = 1 refers to the upper half-plane and the index i = 2 to the lower half-plane. 
Here p, is the shear modulus, tcj = 3 -4v, in the case of plane deformation and rci = (3 - vi)/ 
(1 + vi) in the case of the plane stress state, and vi is Poisson’s ratio. 

Problem. Find the stress-strain state of a plane with cracks L,, n E I, given by formulae 
(12), when the complex potentials Q&z) can become infinite with order less than one at the 
tips of the cracks, which at points f of the line L other than at the ends satisfy the condition 

lim(z - F)Q;,$(z) = 0 as z + t* (1.3) 

and for which large z situated outside some fixed small ne~~hb~ur~~~ U(L) of the line t 
satisfy the inequa~~~s 

lO,,*(z)l~ Mlzr-” , l(z - Z)qJ(z)iS MM-” , M = eunst, a > 1 (1.4) 

Obviously the same inequalities will also be satisfied by the stresses at large z P U(L). In this 
case, as in the case of fu~amental problems of the theory of elasticity for a plane with a finite 
number of cuts 161, one can show that the solution of the problem under consideration will be 
unique, if it exists. 

From the boundary conditions on the line L 

zf,(t)=hfft)* a;(t)=b;ft), u+(t)=r)-ff) 

and on the basis of Eqs (1.2) and (1.3) we obtain the boundary-value problems 

~@tO)=g(~)+Qh(t), Im9i(t)=g(t)-_rIh(t), tE L 

fW = (h-(0 - h+(O) I@3 + r~), g(O = -(r4h+(S)+ r3fi-(f)l I (r3 f r4) 

Writing down the equilibrium condition for the part of the cracked plane bounded by the 
eirele I L IS R, and taking the limit as R -+ 00, we find that in the case under consideration the 
principal vector P for the tangential forces acting on the sides of all the cuts is zero, Le. 

If(t)& = -(rj +rJ”P = 0 
L 

(1.7) 

We will assume that this necessary condition for the problem to be solvable is satisfied. 



2. SOLUTION OF THE PROBLEM 

The solution of problem (1.6) has the form [7] 

where the improper integral over L and the series converge absolutely and uniformly in t in 
any closed bounded domain not containing points of the line L. From (1.7) we have 

Since the fuuction flc) decreases as O(P), L>l as t -+ m, for large zeU(L) the function 
$(z) satisfies inequalities (1.4) 

The solution of problem (IS) has the form [g] a,(z) = Y&C)+ ‘yz(z) where the function G+(z) 
satisfies the conditions 

W(t) + K(t) = Wh PO) = Q?(C) + ($ - tj)h(t), t E L 

and Y..(z) is the sohnion of the problem 

whence !I!&) = m(l -v+JY2(z). As a consequence 

We take a p~~c~~ solutkm of problem (2.3) of the form 

Y#(z) = X(z)F@) 

X(z)= II T-G a +b 
(J =” 

-~[(z-a,,)(~-b~)~~' ’ 2 

F(s)= CF,(z), F,(z)= l j’-““p(‘“df 
nd 2lc(z-c,)S, X’(t) L-Z (2.7) 

where by virtue of (1.1) the infinite product and the series converge absolutely and uniformly 
in any closed bounded domain not containing points of the line L, and X(z) is taken to be the 
branch that is single-valued in the plane with cuts along the line L and has a limit equal to unity 
as z=iy +z%Q. At the points c,,, n EI the function X(Z) has first-order zeros. Outside the 
neighbourhood U(L) it satisfies the inequalities 

0 < Ml 4x(z)lc Ai?2 < -, i(F - P)X’(z)la M* 

and the function F(z) satisfies in~~l~ti~s (1.4) Then the function Q(z) = (\y,(z)- Y~~z))/~~~z~~ 
is meromorphic with simple poles c,, IZ e f and for large z e U(L) satisfies inequalities (1.4), 
and therefore [9] 
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Qt4=~~l~a/(~-c,, w3 

where the numbers A, are such that the series converges unifor~y in any closed bounded 
domain not containing any points c,,. Consequently 

Y+(z) =X(z)W) - iQCzl)l (2.9) 

Sinckz= X(z)* and the function F(z) like the fiction \Y,fz), satisfies condition @.4), we 
have Q(T) = Q(z), for which it is necessary and sufficient that the numbers 4, are real. From 
Eqs (l.Z), (1.6), (2.3) and (2.5) the single-valuedness of the displacements during a passage 
around the cracks is expressed by the conditions 

whence, substituting for Y:(r), we obtain an infinite system of linear algebraic equations for 
finding the constants A, 

2 &*A,=Ha, nEl 
hf (2.10) 

6& = i f x*(t)(t - cJX dt, u, = j X~~~~~~~~~? 

‘5s r, 

where F(t) is taken to be the principal value of integral (1.7) Because the functions X*(t), F(t) 
take purely imaginary values on L,, the numbers 6,,, and H, are real, and for large n the Ha 
satisfy the inequ~i~ I HE IS M ira I-“? til. 

A solution of system (2.10) should be sought in the class fI of real sequences A,, FZ E I such 
that series (2.8) converges uniformly and defines the function Q(z) in any closed bounded 
domain not containing any points c,,, the function Q(s) satisfying inequalities (1.4) for large 
z G U(L). From the uniqueness of the solution of the elasticity problem it follows that if system 
(2.10) is solvable in the specified class of sequences, then its solution is unique. The solvability 
of this system for certain crack distributions has been proved by methods of functional 
analysis, where the solution of the system is found by the method of successive approximations 
or the reduction method, and for large n it satisfies the inequality I A, IS Ml n I-‘, h>l. This 
occurs, for example, in the following cases [lo, 111: 

A. L,,=[nx-u, nx+a], n=O, +l,.. . , i.e. the cracks are arranged periodically along the 
entire real axis. In this case 

X(z) = (sin* 2 - sin2 a)+ sin 2 (2.11) 

and system (2.10) has the form 

from which f l&13] 
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where the 5, are the Fourier coefficients of the function l/s(t). 

B. L,=[n--a, n+a], n=O, 1,. . . , i.e. the cracks are arranged periodically only along the real 
semi-axis. In this case 

X(z) = (r(a - z)r(-a - z))H /l-(-z) (2.12) 

C. Some of the cracks are situated periodically with a single period along the negative real 
semi-axis, others are situated periodically with a different period along the positive semi-axis, 
and the remainder, comprising no more than a finite number of cracks, are non-periodic. In 
this case the function X(z) is also expressible in terms of gamma functions. 

D. The cracks are such that the inequalities c.z”+~ 2 da,, e,_, s da_,, d = const > 1 are satisfied 
for sufficiently large positive n. 

The question as to whether system (2.10) is solvable in the sequence class lT for a general 
distribution of cracks remains open. 

From formulae (1.2), (2.1) and (2.5)-(2.9) it is clear that the stress intensity near the ends 
g. = a, or g,, = b, of th e cracks L,, is given, to within ln I z-g,, I by the function C+(z) which has 
the form [8] 

@l(Z) = -iK,‘(q + rJ’[tin(z - g,)]+ + O(1) (2.13) 

(2.14) 

q,’ = !im”[ti(Z - &JHx(z) 

where the upper sign refers to the right edge c, = a, and the lower sign refers to the left one 
g,, = a,. The real number K.’ in (2.13) is the stress intensity factor (SIF) in the form of [4]. In 
particular, according to (2.11) and (2.12), in cases A and B 

KAf = (q + r2)(n tg a# [iF(nn f a) + Q(mc f a)] 

and 

K,f =(q +r,)r(n+llta) tl3m 
H 

dr(n+if2a) 
[iF(n f a) + Q(n + a)] 

(2.15) 

respectively. 
Because the numbers F(g,) and Q(g,,) decrease as O(n-“), h>l as n + =, and the numbers 

q.’ are bounded by the same constant, the SIFs K,’ also decrease as O(n-“), h>l as n + 00. 
The investigations of this section are summarized in the following theorem. 

Theorem 1. The solvability of the elasticity problem posed in Sec. 1 is equivalent to the 
solvability of system (2.10) in the class of real sequences ll. In cases when the problem is 
solvable (for example, cases A-D), its solution is unique and is given by functions @I 2(z) 
which are found from formulae (2.1), (2.5)-(2.9), and the SIF near the ends g, =a, and g,,‘= b, 
of the cracks Ln are found from formulae (2.14)-(2.16) and when n + ~0 they decrease as 
O(n-^), h>l. 

3. EXTENDING THE CLASS OF SOLUTIONS 

Suppose that the principal vector P of the shear loads acting on the sides of the cracks is 
allowed to be non-zero. Then according to the first equality of (1.7) and equality (2.2), for large 



360 V.V. SIL'VESTROV 

.Z p U(L) the function a*(z) = AZ-’ + O(zea), while the function Y1(z) = O(z-“), where A = PI 
(2x(r, + r4)) and 1>1 From the above and the results of Sec. 2 we consider the stress-strain 
state, given by formulae (1.2) in terms of the functions Q(z), which for large z P U(L) have 
the form 

q(z) = a - $X(z) + m( 1 - Kil$)Az-i + O(zA) (3.1) 

@z(z) = B + Ar’ + O(+), a > I 

where a and p are real and B is a complex constant. From formulae (1.2) we find 

where a;, CT;, z$ and o- are the stresses and rotation as z = iy + +b whose values are to be 
specified. They are specified independently of the way the cracks are distributed. In this case 
the solution of the elasticity problem, assuming it is solvable, is also unique and is given by the 
functions 

U’l(z) = a + X(z)[F(z) - iQ(z) - is]+ m(1 - rcitci)FO(z) (3.3) 

‘% (4 = B + F, (I), Fe(z) = 

The functions X, F and Q are found from formulae (2.6)-(2.10), where in (2.10) it is 
necessary to put 

H” = j x+ (t)(lqt) - $)dt (3.4) 
r, 

Here in formulae (2.14)-(2.16) for the SIF it is necessary to add a term p within the square 
brackets. Since the numbers n: are bounded by the same constant, the SIF K,’ are also 
bounded by the same constant. We note that they do not depend on the values of a;, CT;, and 
o=- 

We will summarize the investigations of this section in the following theorem. 

Theorem 2. The stress-strain state of a plane with closed cracks L,,, n E Z is given by 
formulae (1.2) in terms of functions Q(z) which for large z e U(L) have the form (3.1). This 
state exists if and only if system (2.10) with right-hand sides (3.4) is solvable in the class of real 
sequences Il. If the problem is solvable (for example, cases A-D of Sec. 2), its solution is 
unique and is given by the functions (3.3), while the SIF are found from formulae (2.14)-(2.16), 
where it is necessary to add the term zLs, l(r, + rZ) within the square brackets, and they have the 
same bounds. 

In particular, if at infinity as u + = there are stresses o;, o;, and zJY, rotation w- and 
h*(t) = 0, i.e. the crack edges slide past each other without friction, then the solution of the 
problem, when it is solvable, is given by the functions 

G+(z)=a-$X(z) l-n;,AJ(z-c,) , 1 @*(z)=B 
where the function X and constants 01, l3 and B are found from formulae (2.6) and (3.2), 
respectively, while 4, n E Z is the solution of system (2.10) in the special case when 

H,, = i IX’(t)dt (3.5) 
r, 
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In this case the SIF near the tips of the crack g,, = a,, and g,, = & is 

K,f = y(q I- r2)-l ‘f; 1- I: A& - ck)-’ 
kd 3 

where y is the coefficient in front of the square brackets in (2.14) 
In cases A and B described in Sec. 2, the SIF have the asymptotic representation 

as n+=+, with 5=x- incaseAand $=I incaseB. 

4. INTERACTION OF A MACRO-CRACK WITH AN INFINITE SERIES 
QF MICRO-CRACKS 

Suppose that in addition to the closed cracks I., =[s, 91, (n=O, 1, _ _ .) satisfying 
conditions (Ll), the z plane also contains a single closed semi-infinite crack L_, ==(-m, bf, 
6 <Q,,. Along the sides af the latter we specify Holder-continuous loads 2:; = h*(z) which 
decrease as O(t-“), h>l as t + 00. In this case, under the restrictions imposed on the required 
solution in Sec. 1, all the results of Sets 1 and 2 hold, apart from formulae (2.6) and (2.7) which 
should be replaced with 

X(z)=(z-6)-H 5 z-c* 
m=o b - q&z - b,)lX 

F(z)=- j -- 1 * &I dt + gF tzj 

2n_,X+(t),t-% mv& B 

(4.1) 

(4.2) 

In a11 the remaining formulae one should take L = L_, v &, w L, u . s I ) and the solution of 
system (2.10) should be sought in the class of real sequences A,,, n E I, I = (0, 1, . . .} such that 
in any closed bounded domain not containing any points c,, the series (2-S) converges 
~for~y and defines the functions Q(z) and (z- T)Q’(z) which decrease as U(z’), v > ,%$ as 
z +- outside U(L). 

As in Sec. 3, we extend the class of solutions of the problem, requiring that the functions 
a&z) have the form (3.1) for z E U(L). If it exists, the unique solution of the problem is given 
by formulae (3.3) where one must take L = L_, u L, u L, u . . . . For large z in the upper half- 
plane along the ray arg z = 8, we have according to (1.2), (3.1) and (4.1) 

cry -iz, = a(q + r2)-i&3-Qje-“‘* + r2eu2) + O(pT1), p =lzi 

from which it follows that the stress 2, vanishes at infinity and the constants a and B are 
found from formulae (3.2) where zig, 
specify to within p-“’ 

=0, and to find the real constant p it is necessary to 

z + = along any ray, 
inclusive the behaviour of one of the stresses zXY, o, and o, + CT,, as 

Suppose9 for example, that along the imaginary axis arg z = 7~12 for large p =I z I the stress 
ZXY = QP2 +O(p-‘), where rzY is a specified real number. Then p= ~(2)2~,,/(r, +Q. In this case 
the problem has a solution that is non-vanis~ng at infinity, even if the stresses at the sides of 
ah the cracks are zero, i.e, the problem is of class N [I]. This solution, which depends on the 
single real parameter g describing the stress intensity in a neighbourhood of infinity, is given 
by the functions 
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@l(z) = +X(z)11 - Q(Z)], Q2(z) = 0 

where X and Q are found from formulae (4.1) and (2.8), (2.10) in which H, should be taken in 
the form (3.5). 

Remarks. 1. The results obtained above are still true in the case when the set Z is finite, i.e. 
the number of cracks is finite. In this case the products (2.6), (4.1), the series (2.7), (2.8), (4.2) 
and system (2.10) are finite. 

2. The results do not change if it is required that inequalities (1.4) are satisfied for large z not 
in the entire exterior of the neighbourhood U(L) of the line L, but only on some system 
C={C,), j= 1, 2, . . . of nested smooth curves such that the distance from the tips of the cracks 
to the points of system C is not less than some positive constant and that for all j the ratio of 
the length of the curve Cj to the shortest distance from its points to the origin is bounded by 
the same constant. 
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